笔趣阁 > 程序员修真之路 > 第184章 非欧几何

第184章 非欧几何

作者:骷髅大白兔返回目录加入书签推荐本书
笔趣阁 www.bqgla.com,最快更新程序员修真之路 !

    184.

    从第2001层开始,程理其实也在拼命。

    因为他得赶在开战前,抵达第3000层。

    而这留给他的时间,只有大概21个小时。

    想要在21个小时内,抵达第3000层,毫无疑问是很困难的。

    从1500层开始,后面每一层的数学问题难度,都是急剧增加。

    到最后,程理有的时候,一道题就得卡上半个小时,也很正常。

    但幸好,大部分题目都还勉强在程理能力范围之内。

    而且,最大的幸运是,经过第2000层的顿悟洗礼,程理对数学的理解,和数学的功底,也得到了巨大的进步和提升。

    恐怕程理都没想到,他现在的数学水平,已经可以跟他穿越前的一些高水平的数学家相媲美了。

    甚至有的数学家的基础都没有程理扎实。

    毕竟程理是经过了,从公元前10世纪到现代21世纪,一整个数学史,数千道题目的洗礼,还经过顿悟的凝练。

    甚至还有那神秘的资讯,带给程理无穷无尽的灵感。

    这都是让程理数学水平突飞猛进的真正原因所在。

    有了这样巨大的提高,程理才能在2000层之后,越来越艰深的题海中,披荆斩棘,如同在泥泞的沼泽中,艰难前行着。

    已经做了2000多道题目,程理对这个算学碑的题库分布规律,也有了一个总结。

    算学碑的题库,从低层到高层,难度也是越来越大,越到后面的题目越难,并且每一题的难度提升也越大。

    前面低层的时候,还有可能连着十几题都是同一类的问题。

    但在2000层之后,每一题的题目都具有高度浓缩性,高度概括性,具备某一领域的典型问题特征。

    由于地球上的数学史发展,一直是线性式发展,随着时间推移,整个数学界的水平都是随之增长。

    所以实际上,算学碑这次为程理随机到的这个题库,完全就是地球的数学发展史。

    第1层-第500层,是公元14世纪前的华夏古数学。

    第501层-第999层,是公元14世纪-16世纪,欧洲文艺复兴时期的数学。

    第1000层-1500层,是公元17世纪,以微积分创立为开端的数学。

    第1501层-1999层,是公元18世纪,分析时代的数学。

    而第2000层-2500层,就是关于公元19世纪的数学。

    19世纪的数学,是数学史上一次涅槃时期。

    在18世纪末,不管数学领域也好,还是物理领域也好,都充满了悲观的情绪。

    当时物理领域上,很多人都认为已经把自然物理能研究的都研究得差不多了,剩下的只是修修补补的事情了。甚至有的人认为,以后物理学家可能就没事情干了。

    以现在的眼光来看,这无疑是一种坐井观天的思想。

    而数学一直是和物理学紧密相连的,所以物理学家的这种悲观思想也蔓延到了数学上。

    以至于,著名的数学家、物理学家拉格朗日,在1781年写给达朗贝尔的一封信中说道:“在我看来,似乎数学的矿井已经挖掘很深了,除非发现新的矿脉,否则迟早势必放弃它……科学院中数学的处境将会有一天变成目前大学里阿拉伯语的处境一样,那也不是不可能的。”

    法兰西学院还曾有一份报告“预测”道:“数学的几乎所有分支里,人们都被不可克服的困难阻挡了。吧细枝末节完善化看来是接下来唯一可以做的事情了,所有这些困难好像是宣告我们的分析力量实际上已经穷竭了。”

    这样的悲观论点,在18世纪末,颇为盛行。

    然而在进入19世纪后,与上世纪末人们的悲观预料完全相反,数学在19世纪进入了一个前所未有的突飞猛进时期。

    所以,可以将19世纪的数学,称之为涅槃期。

    程理在第2001层到第2500层的这500道问题里,遇到了许许多多关于19世纪数学的经典问题。

    比如,代数方程的可解性和群的发现。

    代数学由于群的概念引进和发展,获得了新生。这使得代数学的研究对象,不仅仅是代数方程,而更多是研究各种抽象的“对象”的运算关系,这也是后来集合论、逻辑学的根基。

    此外,还有四元数道超复数的问题,也是让程理十分头疼的。

    而在19世纪中叶开始,布尔代数的出现,则让代数学彻底进入了一个全新的领域——逻辑的领域。

    人们第一次发现,原来逻辑也是可以运算的。而这也是后世计算机诞生的理论基础来源。

    除了代数学以外,在几何学领域,19世纪的几何学,甚至可以用颠覆这个词来形容。

    在19世纪之前,几何学还一直是欧几里德的天下,人们将其信奉为真理。

    就好像那时候的人们,在物理学领域将牛顿力学信奉为真理,是一样的。

    然而进入19世纪后,人们隐约发现,欧几里德的几何并非那么完美。

    特别是欧几里德的第五公设:

    “过已知直线外一点,能且只能作一条直线与已知直线平行。”

    在进入19世纪后,不少人都隐约感觉到欧几里德的这条公设,是有点问题的。

    但是经典的权威,让人们惧于公开发表非欧几何的言论。

    以至于,当时有着“数学之王”美誉的高斯,虽然已经有了非欧几何的理论构想,但因为担心被世俗所攻击,所以生前并没有发表过任何非欧几何的著作,人们还是后来从他的遗稿中,发现了他有过非欧几何的研究。

    事实上,“非欧几何”,也就是“非欧几里德几何”,这个名词还是高斯创造出来的。

    不过连高斯这样德高望重的人,都不敢公开发表这方面的观点,可想而知,在当时要挑战权威是多么困难的事情。

    幸好,一个名为罗巴切夫斯基的数学家,用十分坚定和激进的言论,不惧权威的在1829年发表了自己的著作《论几何原理》,这是历史上第一篇公开发表的非欧几何文献。

    程理在算学碑中,第2177层遇到的问题,就是来自《论几何原理》。

    第2177层的问题就是:

    “问,如何证明通过直线外一点,可以引不止一条而至少是两条直线平行于已知直线。”

    程理当时耗费了10分钟写下的证明过程,就是推翻了欧几里德第五公设,并由这个替代公设,发展出一个全新的几何学——非欧几何!